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Computation of Singular and Singularity Induced
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System Model
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Abstract—In this paper, we present an efficient algorithm to
compute singular points and singularity-induced bifurcation
points of differential-algebraic equations for a multimachine
power-system model. Power systems are often modeled as a set
of differential-algebraic equations (DAE) whose algebraic part
brings singularity issues into dynamic stability assessment of
power systems. Roughly speaking, the singular points are points
that satisfy the algebraic equations, but at which the vector field is
not defined. In terms of power-system dynamics, around singular
points, the generator angles (the natural states variables) are
not defined as a graph of the load bus variables (the algebraic
variables). Thus, the causal requirement of the DAE model breaks
down and it cannot predict system behavior. Singular points
constitute important organizing elements of power-system DAE
models. This paper proposes an iterative method to compute
singular points at any given parameter value. With a lemma
presented in this paper, we are also able to locate singularity in-
duced bifurcation points upon identifying the singular points. The
proposed method is implemented into voltage stability toolbox and
simulations results are presented for a 5-bus and IEEE 118-bus
systems.

Index Terms—Differential-algebraic equations (DAEs), power
systems, singular points, singularity-induced bifurcations.

I. INTRODUCTION

IFURCATION theory is the commonly used tool to an-

alyze various types of stability problems in power sys-
tems modeled either as a set of ordinary differential equations
(ODEs) or as a set of differential-algebraic equations (DAEs)
[1]. In the former case, the equations are notoriously stiff when
certain load dynamics are included. As a modeling tool, prob-
lems associated with this affect further analytical studies of the
system. In order to overcome this problem (as well as the fact
of the nonexistence of a universally accepted dynamical load
model) DAEs have been used based on the approximation of
these relatively fast and stable load dynamics as algebraic equa-
tions [2]-[8]. This paper addresses the local bifurcations and
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algebraic singularities of the classical power system with a con-
stant PQ load model, which is modeled as semi-explicit index-1
DAE:s.

It is well known that when parameters are subject to varia-
tions, the equilibria of the DAE power-system model may ex-
hibit three local bifurcations, namely saddle node (SN), Hopf,
and singularity induced (SI) bifurcations. The SN and Hopf bi-
furcations, which are observed in the ODE models of power sys-
tems as well, have been extensively studied in power systems
and they are linked to voltage collapse and oscillatory instabili-
ties, respectively [1]. The SI bifurcation is due to singularity of
the algebraic equations of the DAE model under some parameter
variations. With an SI bifurcation theorem ([7, Th. 3, p. 1999]),
an improved version of it based on the decomposition of param-
eter dependent polynomials can also be found in [9], Venkata-
subramanian et al. have shown that the SI bifurcation occurs
when system equilibria encounter the singularity manifold and
it refers to a stability change owing to one of the eigenvalues
of the reduced Jacobian matrix associated with the equilibrium
diverging to infinity. More recent work on the SI bifurcations in-
cludes the [10] and [11]. In [10], Beardmore has extended the SI
bifurcation theorem of [7] to include nongeneric cases whereby
branching of equilibria is located at the singularity, i.e., [7, As-
sumption 2, SI bifurcation Theorem] is removed and applied it
to a 3-bus power system, which has been also studied by Kwatny
et al. in [2]. In [11], Riaza et al. have provided a detailed study
on the qualitative nature of singular points of relatively simple
index-1 DAE examples indicating that in some cases dynamic
behavior of the system is smooth (well-defined vector field) even
at singular points.

An important implication of the occurrence of the SI bifurca-
tion is the existence of a singular set (or impasse surface) in the
constraint manifold containing infinitely many singular points
at each parameter value, which may play a crucial role in as-
sessing the stability of DAE power-system models. The litera-
ture in power-system stability analysis with respect to the alge-
braic singularities of the DAE:s is rich with references describing
voltage instabilities in terms of the following. Nearness to an
impasse surface [12], [13] sudden change in voltages [14], [15]
and eventual (or actual) loss of voltage causality [2], [12], to
name a few. In [14] Hiskens and Hill have shown that the exis-
tence of the impasse surface is closely related to the load models,
and for constant load model the DAE model has the properties
of voltage instability (i.e., sudden reduction in voltages) when
operating in the vicinity of impasse points (or trajectories coin-
ciding with the impasse surface). In [13], Praprost and Loparo
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have reported similar results and using the bifurcation theory
they have shown that an important part of the stability boundary
is formed by trajectories that are tangent to the singular surface.
More recent studies [16], [17] focus on the direct assessment
of the system stability in the presence of the impasse surface
that lies on the stability boundary. A new energy function tech-
nique has been presented to compute the critical energy over
the relevant segment of the impasse surface that guarantees the
causality if the system has less energy then the critical value.

In spite of the fact that there is no well-established link be-
tween algebraic singularity and voltage collapse as in the case
of the SN bifurcation, most of the work suggests that the system
undergoes some sort of voltage instability when the voltage
causality is lost during a transient. With respect to loss of voltage
causality, it is essential to note that during this, voltages are no
longer implicit functions of dynamic variables when described
by DAE models. To use DAE as a tool, knowledge of where
causality disappears (or where impasse surface(s) “lie””) can be
applied toward the definition of “limits” of appropriateness for
a given model. An underlying issue is that at singular points
(including singular equilibria); the DAE model cannot predict
the voltage behavior. Thus, location of singularities, which con-
stitute important organizing elements of a power-system DAE
model, is invaluable information for assessing stability of the
system. The family of singular points forms a boundary of well-
defined behavior for a given model. In this work impasse surface
is a set of singular points that exhibits loss of voltage causality.

Even though many researchers either in the field of power sys-
tems [2], [ST-[8], [12]-[17] or in the field of the general DAE
theory [9]-[11] have long recognized the importance of singular
points (or loss of voltage causality in power systems) including
singular equilibria in terms of system dynamics, there is no rig-
orous method available in the literature for computing their loca-
tions in the parameter space. Most of the effort focuses on char-
acterizing qualitative description of system dynamics around
singularities without providing a systematic method for locating
them, especially for larger power systems.

Our main purpose here is to propose a simple and efficient
method to identify algebraic singularities (including singular
equilibria) of the DAE model of power systems and to visu-
alize singularities together with the equilibria and their asso-
ciated local bifurcations as a function of the parameters using
traditional nose curves. The proposed method involves the fol-
lowing two main steps.

1) Computing singular points at various parameter values
along the nose curve defined by a designated bus injection
change pattern and illustrating singular points in a two-di-
mensional (2-D) nose curve

2) Developing a lemma showing that any singular point at

a given set of generator bus injections is also an equilibrium

point (thus, it is an SI bifurcation point) at another set of bus

injections.

In the method for computing singular points, we first use
generator angles to parameterize the algebraic part of the DAE
model at any given parameter value (i.e., bus injections) and for-
mulate the problem of identifying singular points as a bifurca-
tion problem of a set of algebraic equations whose parameters
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are the generator angles. Then, at any given parameter value
we implement an iterative technique that combines well-known
Newton—Raphson (NR) and Newton—-Raphson—Seydel (NRS)
[22] methods to compute singular points as being SN bifurca-
tions of load bus voltage magnitudes and angles in the constraint
manifold. We exploit the decoupled-parameter structure of the
DAE model of our interest as to develop a lemma that enables
us to locate SI bifurcation points. In order to apply the lemma
we need to have the knowledge of location of singular points
and the corresponding nonzero real power mismatches at the
generator buses, which are available to us from computation of
singular points.

The rest of the paper is organized as follows. Section II dis-
cuses bifurcations and singularities of the DAE model of the
classical power system. Section II also includes a lemma to iden-
tify the SI bifurcations and presents two examples of the DAE
(one of which is a 5-bus power-system example) to illustrate the
application of the lemma and the key concept of the paper. Sec-
tion III describes methods to compute equilibria and singular
points of the DAE model in details. Section IV presents the sim-
ulation results using voltage stability toolbox (VST)[18], [19]
for the IEEE 118-bus system and illustrates singular points in
the nose curve. Finally, Section V summarizes main contribu-
tions of this work and suggests some of the related future work.

II. DIFFERENTIAL-ALGEBRAIC POWER-SYSTEM
MODEL AND SINGULARITIES

A. Classical Power System Model

The dynamics of a classical power system with constant PQ
load buses are commonly described by semi-explicit DAE of the
form [2]

5, = w
w= - [M_ID]W - M_l[fg((sg?éhv)
- P, g]
fl(6g7 6[7 V) - PZ =
9e(8g,60,V) — Q¢ =0 2.1
where 0, is the vector of generators’ rotor angles, w is the vector
of generators’ angular velocities, 0y is the vector of phase angles
of voltages at the load buses, V is the vector of voltage magni-
tudes, M is the inertia matrix, D is the damping matrix, Py is
the vector of net real power injections at the generator buses,
and finally P, and @, are the vectors of net real and reactive
power injections at the load buses, respectively. The differen-
tial equation is the swing equation representing generator dy-
namics, and algebraic equations are the power flow equations at
the load buses. In order to obtain a compact form of (2.1), letxz =
T T _ T
L6 W]y =6 VI 0 = [0T (=M 1P)T]
and 3 = [P} QT], then, we have

(2.2)

where f(z,y) = [wT (=M ~'Dw— M1 f,(8,, 60, V)T ]"
and g(xvy) = [ff((sg/(si/v) g[T(ég?(SZvV) ]T'
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For a network consisting of 1, number of generators and n,,
number of PQ load buses the P, parameter vector is in the form
of Py = [P,...P,,]" and denotes net real power injections
to the n, — 1 number of generators (note that generator bus #1
is chosen as the swing bus of the system). The set of param-
eters 3 = [PF Q{]T denotes the load demands at the n,,

number of load buses where P, = [Png+1 o Png+npq] r and

Qe = [Quny41--- Qng+npq]T are the real and reactive power
demands, respectively. For the sake of simplicity in the nota-
tion, from this point forward, we assume that z € ", y € R™
and 3 € R* where § = [ﬁg [3Z]T.

The DAE model of (2.2) has two essential features: 1) ex-
plicit parameter dependence and 2) differential-algebraic struc-
ture. The parameter dependence implies that the system equi-
libria may exhibit local bifurcations when parameters are sub-
ject to variation. These bifurcations are SN, Hopf, and SI bifur-
cations. The SI bifurcation, which is not observed for the ODEs
model of power systems, is due to the algebraic structure. The
main focus of this paper is singularities of DAE model (2.2)
including SI bifurcations. In Section II-B, we briefly describe
those bifurcations focusing on the SI bifurcations.

B. Local Bifurcations and Singularities of the DAE Power
System Model

Local bifurcations of the equilibria associated with the
changes of the parameter 5 have been observed in the DAE
model of power systems. Various types of bifurcations and
associated computational issues are summarized in [5] and [7].
The first step to analyze bifurcations is to compute various
equilibria when the parameter (3 is varied. For a given set
of this parameter, an equilibrium point satisfies two sets of
algebraic equations. The set of all equilibrium points is defined
as follows:

E= {(‘T7yﬂ) € §Rn+m+k |f(:177y) - /Bg = 07

g(@,y) — Be = 0}.
The stability of the DAE systems is more complicated than for
systems described by ODEs due to algebraic structure of the

model. The algebraic part of (2.2) requires that any motion be
constrained to the set

M(B) = { () € R™™ |g(ar,y) — B¢ = 0,3 = constant} .
(2.4)

2.3)

Typically, we expect M to be composed of one or more dis-
connected (differentiable) manifolds [20] called components. In
general, when we refer to M, we will mean a particular one of
these components called the principal component. M 1is a reg-
ular manifold of dimension n if

rank [@g—g} = m on M. 2.5)

Oz Oy
The structure of M depends, of course, on the parameter 3. Even
for very simple power-system models, (2.5) may not be satisfied
for some values of (3. The manifold M is the state space for the
dynamical system defined by (2.2) which induces a vector field
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on M. The vector field may not be well defined at all points of
M. At any point (z,y) € M, we have & = f(z,y) — f,, and
if [Dy(g(z,y) — B¢)] is nonsingular, then, ¢ is uniquely defined
by

-1
-3 [ ven-n. o
If [Dy(g(z,y) — Be)] is singular at a point (x,y) € M, then,
the vector field is not well defined at that point. Typically, such
singular points lie on codimension 1 submanifolds of M.

Definition [5]: Suppose M is a regular manifold for all
near 3*, and that det[D, (g(z,y) — f¢)] # 0 at a point 8 = 3*,
(z,y) = (z*,y*) € M. Then, (z*,y*, 8*) is said to be causal.
Otherwise, it is noncausal. [ |

The causality of a point could be extended to the causality of
a region as follows [14], [15]:

Cp(B) = {(z,y) € M[det [Dy(g(z,y) — Be)] # 0;
[Dy(9(z,y) = Be)] | (2.v)

has p negative real eigenvalues} . 2.7

The region C), is called a voltage causal region or solution sheet
[13] and p is the voltage causal region index. Within any voltage
causal region, load bus voltages and angles follow generator
angles’ behavior. At any causal point (z*,y*, 3*) in the re-
gion, the implicit function theorem ensures that there exists a
function v(z, 3) defined on a neighborhood of (z*, 3*) with
y* = P(x*, %) and that satisfies g(z, v (z,5)) — Be = 0. It
follows that within a voltage causal region, trajectories of the
DAE are locally defined by the ODEs

T = gb(1177,8) = f($7¢(x7/8>ﬁ)

Typically, in a major part of the constraint manifold, such a re-
duction is possible and the ODEs uniquely define the dynamic
behavior of DAEs. However, the constraint manifold will, in
general, contain noncasual points (or singular points) at which
equivalence is not possible. These singular points that lie in the
boundary of voltage causal regions form a singular surface (or
impasse surface) in the constraint manifold [7], [15]

_ n+m q($y)_ﬁ :07
S(8) = {(“’) en ‘detwy@(x,y) S =0 hg)

Over casual regions, system dynamic behavior evolves ac-
cording to a locally equivalent ODE system representation.
However, trajectories that encounter the singular surface typ-
ically undergo loss of existence/uniqueness. The DAE model
breaks down and fails to predict the system behavior.

Local bifurcation analyses of power systems identify qualita-
tive changes in system equilibria of ODEs system of (2.8) such
as number of equilibria and their stability features as the pa-
rameters are subject to vary slowly; and these bifurcation con-
cepts can be easily extended to DAEs systems of (2.2) [5]. The
stability feature of an equilibrium point (g, yo) and associated
local bifurcations are determined by the eigenvalues of the re-
duced system matrix if [D,(g(z,y) — (¢)] is nonsingular

[Asye] = Do flo — Dy flo [Dyglo] ™" Dyglo-

2.8)

(2.10)
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The SN bifurcation occurs when a stable equilibrium point
(SEP), 2§(3), meets a type-1 unstable equilibrium point (UEP),
z§(B) at a parameter value § = (gy to form an equilibrium
point zsx = s§(Osn = z§(0sn). The corresponding reduced
system matrix [Agys]|zsy has a simple eigenvalue at the origin,
and certain transversality conditions are met [21], [22]. If the pa-
rameter (3 increases beyond the bifurcation value 5 = s, then,
zsN disappears and there are no other equilibrium points nearby.
The consequence of the loss of equilibria is that the system states
change dynamically. In particular, dynamics can be such that
the system voltages fall in a voltage collapse. The SN bifurca-
tion has become a widely accepted paradigm for one important
form of voltage instability and linked to voltage collapse [23],
[24]. In an appropriate parameter space such as megawatt (MW)
real power transfer the SN bifurcation point, also known as the
maximum loading point or point of collapse, provides informa-
tion on the static stability margin of the current operating point.

Hopf bifurcation occurs when a pair of complex conjugate
eigenvalues moves from the left to right half of the complex
plane, or vice versa, crossing the imaginary axis at points other
than the origin. The importance of Hopf bifurcation has been
increasingly recognized, as it became clear that stability of
the equilibrium could be lost by this mechanism well before
reaching the point of collapse for the real large power systems.
Such a detailed analysis of oscillatory instability related to
Hopf bifurcation for the disturbance occurred on June 12, 1992,
on the Midwestern segment of US interconnection system has
been reported in [25] for a DAE model of a real power system.

The last local of bifurcation of interest is the SI bifurcation
that occurs when an equilibrium point, say (o, yo) encounters
the singularity of the algebraic equation g(z,y) — S; = 0 at the
parameter 3 = (s1. The SI bifurcation refers to stability change
due to an eigenvalue of the reduced system matrix associated
with the equilibrium point diverging to infinity from either —oo
to +00, or vice versa [7]. Similar type of instantaneous changes
in the eigenvalues of reduced system matrix is also observed in
the case of limit induced (LI) bifurcation that occurs when the
control limits such as limit on the field voltage are reached [26].
However, in the LI bifurcation case, these changes are small
compared to those of SI bifurcation case. The set of SI bifur-
cations is defined as follows:

f($>y) - [7)9 =0
SI(B)=A{ (z,y,B) € R"TmTE g(z,y) =B =0
det[Dy(g(z,y) — Be)] = 0
2.11)

The singularity of [D,(g(z,y) — B¢)] (similarly, unbounded
eigenvalue of [Agys]) implies that the system will experience
some sort of instability problem resulting from fast interactions
of network variables. However, it is difficult to predict the nature
of instability owing to modeling limitations. The DAE model
cannot predict the system behavior and the validity of the model,
as a characterization of the power system, is questionable. It
is likely that uncertainties, neglected in the DAE model, now
become central to the local behavior of the system. In order to
avoid algebraic singularity problems, Praprost and Loparo [13]
(much earlier DeMarco and Bergen [12] and Arapostathis et al.
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[27] have proposed a singularly perturbed differential equation
(SPDE) as the power-system model and their simulation results
indicate that rapid decline in bus voltage magnitudes may occur
if trajectories pass close to the singular surface. More recently,
Huang et al. [28] has also used SPDE model to analyze system
behavior and through eigenvalue analysis they have shown that
the SPDE model will have the same dynamic behavior as the
reduced ODE:s if some adjustments on the sign of the algebraic
equations are made.

Note that in the DAE of (2.2), the parameter 3, is decoupled
from the rest of the equations, and at the singular points (not
singualar equilibria) there exists real power mismatches at the
generator buses (i.e., © = f(zs,ys) — Osg = Afsy # 0) This
decoupled-parameter structure allows us to locate SI bifurca-
tion point when a singular point, say (s, ys), belonging to the
singular set of (2.9) and the corresponding nonzero real power
mismatches at the generator buses are known. The following
lemma, which exploits this decoupled structure, shows that it is
possible to find a new set of parameters such that (zs, ys) will
be a singular equilibrium point.

Lemma: A singular point of (2.2) (z5,ys) € S(8s) ata given
parameter value 3 = (; is also an equilibrium point, hence, an
SI bifurcation point, at another parameter value 3 = "V,

Proof: Suppose that (x4, y) is a singular point of the de-
coupled DAE of (2.2) at the parameter value 3 = [3] ﬂZT]T
such that

T :f(xs7ys) - /Hsg ;é 0
0 :g(xs-,ys) - /63/
det[Dy(g<xsays> - ﬂsl)] =0.

Observe that since (zs,ys) is not (in general) an equilibrium
point, and we have a nonzero mismatch at the generator buses.
Let this mismatch be & = f(zs,ys) — Bsg = ABsy # 0. In
order to force a zero mismatch at the generator buses, we can
always define a new set of injections 8" = fB5, + Af;, at the
generator buses such that

(2.12)

&= f(zs,ys) = (Bsg + APsg)
= Fl@e ) — B2 = 0
0=9g(zs,ys) — Bse
det[Dy(g(ws,ys) — Bse)] =0. (2.13)
Therefore, a singular point (zs,ys) € S(Bs) = S(B*V)
at the parameter = [ﬂgT ﬂ/T]T is an equilibrium point.

Indeed, it is a SI bifurcation point at the new parameter
grew = [(B1e)” 571" where B2 = B,y + AB,,. =

This lemma enables us to identify the SI bifurcation points
once singular points and the corresponding nonzero real power
mismatch values at the singular points are available. Note that
the injections at the load buses remain the same. In order to make
a singular point an SI bifurcation point we need to adjust only
the injections at the generator buses, which are the mechanical
input to generators. This lemma assumes that mechanical input
to the generators are controllable, which is realistic. This as-
sumption also indicates that we can control the generator angles
04, which leads us to propose an iterative method to identify sin-
gular points and thus, the SI bifurcation points by the previous
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Singularity induced
bifurcation point

Singular surface
where [D, g] is singular

Fig. 1.

lemma. The application of the lemma and illustration of the con-
straint manifold for a 3-machine 5-bus system are presented in
Section II-C.

The main focus of local bifurcation analysis is to determine
qualitative changes in the equilibria when the paramaters slowly
change. Recall that the parameter vector J represents the bus in-
jections in the network. Changes in bus injections are achieved
through parameterization of bus injections with a scalar param-
eter known as a bifurcation parameter

B = 3° 4+ o direction 3 (2.14)

where 3° is the base case bus injections, « is the scalar bifurca-
tion parameter and is the direction 5 = [dgg dy, dgz]T vector
in the parameter space, which allows us to vary bus injections at
a single bus and/or group of buses. The elements of direction 3
are

dp, = [dp, ... dp, ]
dpl = [dP"g*1 dP”g*”pq ]T
dg, = dq,, . dg.,.... 1" - (2.15)

The elements of d P, dp,, and dg,, can be set to be positive,
negative, or zero depending on the load increase scenario of in-
terest. For example, if one wants to increase real power injec-
tions into some selected generator buses, and then the corre-
sponding elements of dp, are set to be positive. Similarly, in
order to increase real/reactive power demand at some selected
buses one needs to set the corresponding entries of dp, and d,
to be negative.

The bifurcation diagrams and singular surfaces are multi-di-
mensional even for relatively small sized power systems
making it difficult to visualize them in a multi-dimensional
space. Therefore, a 2-D or 3-D projection is usually used to
illustrate the equilibrium and singular points of (2.2) upon
parameter variations. Fig. 1 illustrates a 3-D equilibrium set (or
surface) with a 2-D singular surface cutting it. It is worth to state
that there is no reason to expect the singular surface to form a
smooth surface as shown in Fig. 1. However, we do expect it to
be a set (not necessarily) connected with a boundary. This 2-D
singular surface (shown as planar) is really an approximation of
a nonplanar surface that will actually cut the 3-D equilibrium
surface. Note that a nose curve that shows the evolution of

Three-dimensional depiction of bifurcation diagram with a singular set.

[24

Singular surface as seen
from within given, (V, &, a)-surface

(V, 8, a)- surface for a fixed
search direction in « - space

stable
e INStable
XX XXX singular points

(direction ),
(direction f3),

S (¥ Vo @)

K
X x X x «
X x Saddle node (SN)

bifurcation
(¥ 6 %)
, T , Singularity induced (ST)
(x"y bifurcation
g - ® L >
('XS O‘SI (XSN a
Fig. 2. Illustration of bifurcations of equilibria and singular points in a 2-D

nose curve.

the equilibria is plotted for a particular load increase pattern.
Two equilibrium points of the nose curve at a given parameter
value a are also depicted, namely upper and lower voltage
solutions, and they are labeled as (V*, 6%, a) and (V¥, 6%, a),
respectively. This nose curve represents the equilibrium set of
(2.3) and dashed surface represents the singular surface given
by (2.9). When the nose curve crosses the singular surface, the
SI bifurcation occurs. The SI bifurcation point on the surface is
labeled by (). It is expected that for different load increase pat-
terns the nose curve will cross the singular surface at different
points indicating other SI bifurcations as can be seen in Fig. 2.
Fig. 2 shows two nose curves each representing a different
bus injection increase pattern defined by (direction 3); and
(direction 3)2. Note that along the nose curve of (direction 3);
two local bifurcations, SN, and SI bifurcations and stability
characteristics of the equilibria are illustrated schematically.
Note that various singular points are denoted by (z) as the
bifurcation parameter « varies.

Our main idea here is to depict stability limits of operating
points in the presence of algebraic singularities. The traditional
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A )Y
Saddle node bifurcation Ep
(¢,12,—¢,12) !
(0.¢c,) EP,
Constraint manifold
X+y'=cl
Singularity \ /
induced bifurcation \
det[D, g(x,y)]=0
(¢;,0) i
-c,,0 0,0 "
¢ =—2¢,<0 (=e:.0) (0.0) Singularity
¢ =-c<0 induced bifurcation
EP, \
¢ = 0 (0’762 ) \
EP, (¢,12,—¢,12)
Saddle node bifurcation
¢=c,>0 c,:\/fc:>0

Fig. 3. Tllustration of SN and SI bifurcations.
Saddle node bifurcations
loss of equilibria «—  two equilibrium points —— 8 —» loss of equilibria
@ \ g & & " g >
—2¢, -c, 0 c, e [
Singularity induced bifurcations
Fig. 4. SN and SI bifurcations with qualitative changes in the number of equilibrium points as a function of ¢; and c..

nose curves (or PV curves) are usually used to indicate stability
margins imposed by various local bifurcations in the parameter
space. We bring singularity information into the nose curve and
illustrate changes in both equilibria and singular points as the
bifurcation parameter o slowly changes. This way of bringing
singularity information gathered from the constraint manifold to
the parameter space gives a visual representation of both static
and dynamic stability boundaries together in the same picture,
as shown in Fig. 2.

In Section II-C, we provide two illustrative examples of the
DAE model (one of which is a power-system example) in order
to show the types of bifurcations in the solution structure of the
system equilibria, singularities of the constraint manifold, and
the application of the lemma.

C. Two lllustrative Examples

Example I: Consider the following parameter-dependent
DAE:

T = —:1:—|—y+01:f(:17,y701)

0=a%4y% -2 =glx,y,cy) (2.16)

where x is the dynamic state variable, y is the algebraic variable
and, ¢; and co are the parameters.

Note that the DAE of (2.16) is in the form of (2.2) where pa-
rameters ¢; and cs are decoupled from the rest of the equations.
Observe that for any given parameter values, equilibrium points
are the intersection of the two curves: 1) y = x — ¢y, a line, and
2) 2% + y2 = c%, a circle centered at the origin with a radius cs.
Fig. 3 shows the constraint manifold (i.e., 22 + y? = c2) and
various equilibria as well as their bifurcations depending on the
parameter c;. For —ce < ¢1 < c2, there are two dynamic SEPs
labeled as EP; and EP, for ¢; = 0 in Fig. 3. However, when
c1 is subject to vary in either positive or negative direction we
observe bifurcations of the equilibria. First bifurcation occurs
at the parameters c1 = £co when one of the stable equilibria
(EP) for ¢ increasing in positive direction or EP5 for ¢ in-
creasing in negative direction) coincides with the singularities of
the constraint manifold. This is an SI bifurcation. Observe that
the constraint manifold has singularities at {(—cs,0); (¢2;0)}
for which the Jacobian matrix of the algebraic equation of (2.16)
(i-e.,[Dyg(z,y, c2)] = 2y) has a simple eigenvalue at the origin.
Further increase in ¢q causes one of the stable equilibria to cross
the singular surface and to become a type-1 UEP. The second
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Fig. 5. Five-bus system with three generators and two load buses.
bifurcation is observed at parameters ¢; = +v/2¢5 for which
two equilibrium points, EP; and EP5 meet at (¢1/2,—c¢1/2),
which is an SN bifurcation as shown in Fig. 3. Finally, beyond
the parameter ¢; = ++/2¢5 the DAE of (2.16) does not have
any equilibrium. The occurrence of SN and SI bifurcations with
the qualitative changes in the number of system equilibria as a
function of c; is also summarized in Fig. 4.

The singular set of (2.16) separates the constraint manifold
into two regions that are connected through the singular points
(—c2,0) and (co,0). These two regions, which are the half cir-
cles in Fig. 3, are defined as follows:

Co = {(Z‘,y” —cp<xr<coandy = \/(:%_71;2} (2.17)
Cr= {($79)|—cz<x<62andy:_\/c%_7x2}‘

(2.18)

Within the region, Cyy or C1, the DAE example of (2.16) could
be reduced to the locally equivalent ODEs given below, and
the dynamics of the DAE is uniquely determined by the cor-
responding ODE in each region

= —x+1/c3 —22+c10onCy

= —x — C%—l’Z—i—Cl onCl. (219)

This example illustrates that even a simple DAE model may ex-
hibit local bifurcations. In the next example, we study bifurca-
tions and singularities of a DAE model of a 5-bus power system
and illustrate the application of the lemma for locating SI bifur-
cation points presented in Section II-B.

Example II: 'We now present a 5-bus power-system example
to study bifurcations and demonstrate the application of the
lemma for identifying SI bifurcations. The 5-bus system, whose
one-line diagram is shown in Fig. 5, has three generators and
two constant PQ load buses [13]. The base case bus injections
in per unit (pu) with a 100-MW base are as follows:P) =
[P, P)" =[5 5]".P0 =[P, P;]" =[-10 —5]",
and QY =[Qs Qs]" =[-3 -2]".

Generators, which are undamped have the internal voltages
E =112 12 1.2]" pu that are equal to terminal voltages

0.85

0.8

075

07

voltage magnitude at bus 4, V, (pu)

(S.E.P), |

PSS [ T TR I S N N R
0 0.1 02 03 0.4 05 06 0.7 0.8 0.9

scalar parameter, (o)

Fig. 6. Voltage magnitude at bus 4 (V) and singular points versus parameter
alpha (o).

since the reactance x4 = 0.1 pu includes the transient reac-
tances of the generator and transmission line. Generator 1 is
chosen as the swing bus with zero angle and all the other phase
angles are relative to the swing bus. In order to determine a
set of equilibrium points including the SI bifurcation, we vary
mechanical inputs to the generators 2 and 3 (P» and Ps); and
real/reactive power demand at bus 4. The resulting search direc-
tion in the bus injection space is as follows:

dp, =[0.5 0.5]"
dp, =105 0]
dg, =[-0.15 0],

Fig. 6 illustrates how the equilibria for the voltage magnitude
at bus 4 (V) and their corresponding stability characteristics
change with parameter variations. Observe that as the param-
eter « varies, the system equilibria undergo SI and SN bifurca-
tions labeled as SI (S1), SN. As the bus injections are increased
through the scalar parameter «, both the high-voltage equdilib-
rium SEP;, and low-voltage equilibrium SEP, are dynamically
stable. However, at ag; = 0.785 low-voltage equilibrium point
undergoes a stability exchange (stable — unstable) due to an SI
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Fig.7. Critical eigenvalues of the system matrix Asvs as the parameter alpha
() varies indicating the SI and SN bifurcations.

bifurcation and it becomes a type-1 UEP. Further increase in the
parameter « causes the high- and low-voltage equilibria to meet
at an SN bifurcation for agy = 0.8.

The SN and SI bifurcations are detected by monitoring the
eigenvalues of system matrix (2.10) as the system moves from
one equilibrium point to another with changes in the bifurca-
tion parameters «. Fig. 7 shows how two critical eigenvalues
of the system matrix move as « changes from «« = 0.773 to
a = 0.8 along the lower branch of nose curve; which lead to
SI and SN bifurcations. The arrows indicate the direction of in-
crease in the parameter «. Just before the SI bifurcation; say at
a = 0.773, the critical eigenvalues (please note that noncrit-
ical ones are not shown in Fig. 7) are located in the left half
plane, which implies stability. As the parameter changes from
a = 0.783 to agr = 0.785 one of the complex eigenvalue moves
(in jump fashion) to the right half plane and becomes a large
positive number while the other eigenvalue stays in the left half
plane but it becomes a large negative real number. Therefore,
stability feature of the equilibria undergoes an instantaneous
change from stable to unstable with exactly one eigenvalue. This
stability exchange is due to an SI bifurcation at which the Jaco-
bian matrix [D,g(z,y)] has a simple eigenvalue at the origin
and one of the eigenvalues of system matrix [Agys] becomes un-
bounded [7]. A clear picture of the occurrence of the SI bifur-
cation with a much larger real eigenvalue can be obtained at the
expense of simulation time [18]. As a increases further, an SN
bifurcation occurs at agny = 0.8 and one of the critical eigen-
value of [A,ys] becomes zero while the other one remains in the
left half plane. The SN bifurcation corresponds to the point of
maximum loading for this particular load increase pattern of the
DAE system.

Fig. 6 also shows singular points at various values of « along
the nose curve, which are depicted by (z) and labeled as S.
In Section III, we will present a method to compute these sin-
gular points. It is worth mentioning here that there are multiple
singular points at any given parameter . However, we are in-
terested in those that eventually meet with one of the equilibria
located in the lower branch of the nose curve as the parameter o
is subject to vary as illustrated in Fig. 6. Note that the singular
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Fig. 8. Constraint manifold projection onto the (V4, 62 )-space at o« = 0.4.
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Fig. 9. Constraint manifold projection onto the (Vy, 62 )-space at « = 0.785
illustrating the occurrence of a SI bifurcation.

point S7 at asy = 0.785 coincides with low-voltage equilibrium
indicating a SI bifurcation. In Fig. 6, we also depict another sin-
gular point (S3) for « = 0.4 and ag; = 0.785 as to clearly
show the relative locations of other singular points that are not
associated with the SI bifurcation.

The relative location of singular points with respect to equi-
libria and SI bifurcation point can be clearly seen using 2-D
projections of the constraint manifold. Fig. 8 shows a 2-D pro-
jection of the constraint manifold onto the (V, 62)-space for
a = 0.4. The constraint manifold consists of two voltage causal
regions (Cy and C7) separated by singular points S; and S5.
Note that each voltage causal region contains dynamically SEPs
labeled as SEP;, and SEP,. These equilibrium points corre-
spond to high- and low-voltage equilibrium points at « = 0.4
shown in Fig. 6. Singular points S; and S5 are the same ones
shown in Fig. 6 at @ = 0.4, and they indicate the bifurcations of
the algebraic variables (i.e., load bus voltage magnitudes and an-
gles) when generator angles are considered as parameters. It will
be informative to illustrate the occurrence of the SI bifurcation
by using the constraint manifold projection. Fig. 9 shows the
same 2-D projection onto the (Vy, §2)-space for asr = 0.785.
This time, however, the low-voltage equilibrium point SEP,
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moves along the region C; as « increases from a« = 0.4 to
asy = 0.785 and coincides with the singular point S; while
the high voltage one, SEP,, stays in the region Cj. Note that
for this load increase pattern, both equilibria move toward the
singular point .S not toward S, along the regions as the param-
eter « varies. Therefore, Sy or any other singular points rather
than S, are not associated with the SI bifurcation.

We now illustrate the application of the lemma to this power-
system example. According to the lemma, recall that we can
find a new set of bus injections such that any of the singular
points along the nose curve shown in Fig. 6 can be an SI bi-
furcation point. For illustrative purposes, we choose the sin-
gular point S7 at s = 0.4. For the 5-bus system, the vec-
tors of 3, and (3, contain net power injections at the buses.
Specifically, 3, = [0T PgT]T and 3, = [P} Q?]T where
Py=[P P)".P=[P PN, and Qo =[Qs Q5]
At the parameter o = 0.4, the bus injection vectors would be
P, =052 52]" pu, Py =[-102 —5]" puand Q. =
[—-3.06 —2 ]T pu. The corresponding mismatch vector at the
singular point S; is Afsy = [0 APSE]T where AP;, =
[AP, AP3]" =[-0.085 0.341]" pu. We can adjust the
injection of the buses 2 and 3 such that the singular point Sy
will be an SI bifurcation point. The new injection at the gener-
ator buses would be 7% = [0T ( PneW)T ] T where prev =
[Ppew ppew]T = [5.115 5.541]" pu. Note that injections
at the load buses (buses 4 and 5) remain unchanged and the cor-
responding swing bus injection is P; = 4.544 pu obtained by
Py =—(Py+ P+ Py + Ps).

After having illustrated local bifurcations and singularities of
the relatively simple DAEs, we are now at a stage of presenting
methods for computing them. In Section III, we first briefly
summarize a commonly used algorithm to compute equilibrium
points and their associated bifurcations, and then we present a
search method for computing singular points at any given pa-
rameter along the nose curve.

III. IDENTIFICATION OF EQUILIBRIUM AND SINGULAR POINTS

A. Identification of System Equilibria

In this section, we summarize the method implemented in
VST for computing equilibria and their associated static bifur-
cations as the parameter varies. The starting point for the bifur-
cation analysis of the power-system model (2.2) is the identifi-
cation of system equilibria. For a given set of parameters (3, an
equilibrium point (g, Yo, o) satisfies two algebraic equations

f(zo,y0) = Bgo = 0, 3.D

9(0,Y0) = Beo = 0.
Load flow analysis is basically the identification of the set of
equilibrium points of (3.1). The VST implements load flow cal-
culations that function up to the point of collapse (SN bifur-
cation point). Conventional numerical methods for computing
equilibria, such as the NR method, must be modified in order
to obtain reliable results near bifurcation points. Two methods
have been applied to power-system analysis: the continuation
(or homotopy) [29] method and the direct (or point of collapse)
method [30]. The direct method proposed by Seydel to compute
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the branch points in single-parameter nonlinear algebraic equa-
tions has proved remarkably effective in power-system appli-
cations. Many investigators have implemented variants of this
approach, imaginatively tailored to the special features and re-
quirements of power systems [31]-[34]. We refer to these as
a group as the NRS method. We describe our implementation
of the Seydel’s direct method. For convenience, we collect the
dependent variables x and y into a single vector which we de-
note by z (e, z = [T yT|"). Similarly, we collect the pair
of functions f(x,y, ) and g(z,y, ) into the single function
F(z,a) = [fY(z,y,a) ¢%(z,y,0) ]T. Note that the vector
of parameters 5 = | ﬂg 74 ]T is replaced by the scalar bifur-
cation parameter « that parameterize [ through (2.14). We seek
to investigate the zeros of ', z € RY (equilibria) as a function
of the bifurcation parameter o € R! where N = n+m

F(z,a)=0. (3.2)
The standard NR method applied to (3.2) is
[D.F(z;,a)]Az = —F(z,), zi41=2z+Az (3.3)

where [D, F] is the load flow Jacobian matrix.

However, the NR method breaks down near (static) bifurca-
tion points, i.e., when [D, F'] is singular (rank[D.F] < N). In
generic one-parameter families the dimension of Ker[D, F] at
a bifurcation point is precisely one, i.e., rank[D,F] = N — 1.
Thus, to locate such a point we seek values for z € RV, o € R!
and nontrivial v or w € RN which satisfy

(3.4a)
(3.4b)

F(z,a) =0
[D.F(z,a)]v =0, orw?[D.F(z,a)] =0.

The requirement for nontriviality of v, w may be stated by

[lv|l = 1, or ||w]| = 1. (3.4¢)

One basic approach to finding bifurcation points is to apply the
NR method to (3.4). This is the NRS method. Data that satisfies
(3.4) will be denoted as zp, ap, vy, wp and we designate the
Jacobian J, := [D.F(zp,p)]. Note that the vectors vy, wy
have special significance. They are, respectively, the right and
left eigenvectors corresponding to the zero eigenvalue of .J;,. The
eigenvector vy, spans the kernel of .J, and wy, spans the kernel of
JIT . Once a bifurcation point is located, it is feasible to modify
the above method to compute points around the fold (nose) of
the equilibrium surface

F(z,a) =0
[D.F(z,a) = M]v =0 (3.5)
for values of A € [—&1 2] withey,e9 > 0.

This allows computation of equilibrium points close to the bi-
furcation point where the conventional NR calculations would
fail. Of course A = 0 corresponds to the SN bifurcation point.
The above method can be effective but it has the disadvantage
that is significantly more computationally intensive than a stan-
dard load flow. It involves solving 2N + 1 equations as op-
posed to IV, and it requires computing second-order derivatives
of F. However, it possible to devise potentially more efficient
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Fig. 10. Graphical illustration of the method for computing singular points.

methods that exploit the fact that (3.4b) and (3.4c) are linear in
v and w [33].

In VST, governing equations of the classical model and
Jacobian matrix including the second derivatives have been
constructed symbolically and a three-stage load flow method,
NR — NRS — NR, has been implemented to compute
equilibria and bifurcations. First, the standard NR method is
used until it fails to converge. Then, it automatically switches
to the NRS method to find load flow solutions at and around
SN bifurcation point. After passing through the SN bifurcation
point, the standard NR method is switched back to compute
low-voltage solutions.

B. Identification of Singular Points

In this section, we present an algorithm to compute singular
points of the DAE model of (2.2) at any given parameter value
along the nose curve. The method is an iterative technique that
combines well-known NR and NRS methods, which are com-
monly used to compute SN bifurcations in power systems as ex-
plained in Section III-A. The proposed algorithm benefits from
the knowledge of the system equilibria and the occurrence of
the SI bifurcation. Generator angles are parameterized through
a scalar parameter in the constraint manifold. Then, at any given
parameter value, the identification of a singular point is formu-
lated as a bifurcation problem of a set of algebraic equations
whose parameters are the generator angles. In the following, we
explain why we parameterize generator angles and how this pa-
rameterization is achieved.

1) Parameterization of Generator Angles: Recall that the al-
gebraic part of the DAE model of (2.2) represents the real and
reactive power equations at the PQ load buses

0= g(dg,) — B

At a fixed parameter value, the constraint manifold consists of a
set of points (6, y) satisfying (3.6). As explained and illustrated
in Section II (see Figs. 8 and 9 of Example II) the constraint
manifold contains voltage causal regions and singular points

(3.6)

connecting them. Fig. 10 hypothetically illustrates a magnified
segment of the constraint manifold composed of two voltage
causal regions, Cy and Cj, and a singular point (s, ¥s)-
Note that the region Cj contains the upper equilibrium point
(5§,ye) while the region C; contains the lower equilibrium
point (ég,y“). These equilibria correspond to the high- and
low-voltage solutions at a given parameter value along the
nose curve (see Fig. 6 for an example), which are known to us
from the computaion of equilibria and bifurcations explained
in Section III-A.

Observe that for any given generator angle ¢, there are two
corresponding solutions for the algebraic variable y that repre-
sents the load bus voltage magnitude and phase angle. As the
generator angle increases, these two solutions move along the
regions Cy and C until they meet at the singular point (8,5, ¥s)-
At the singular point, the Jacobian matrix [Dy(g(z,y) — (e)]
becomes singular and there is no solution for y if 0, is futher
increased. This observation indicates that algebraic variables
show a nose curve type of behavior as the generator angles vary,
and they undergo an SN bifurcation at the singular point. This
behavior is similar to the SN bifurcation of the equilibria as the
bus injections change. This observation leads us to use gener-
ator angles as parameters and to seek methods to compute the
SN bifurcations of algebraic varibles, which is a singular point
of the DAE model.

A recent work by Singh and Hiskens [16] on the characteriza-
tion of the stability boundary of the DAE model has illustrated
the fact that singular surfaces lie on the boundary of the stability
region of a SEP and they contain infinitely many singular points.
However, as illustrated in Figs. 6-9 of Section II, we are only
interested in computing those singular points that eventually in-
tersect with an SI bifurcation point for a given bus injection pat-
tern. Specifically, we also assume that we specify apriori which
injections will change to create other singular points.

In order to trace the corresponding segment of the manifold
and to compute the singular point shown in Fig. 10 we need
to implement an iterative method that initiates at a point in C
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and ends up at another point in C; passing through the singular
point (44, ys). The upper and lower equilibrium points are the
obvious choice for the starting and ending points of the algo-
rithm since they are available to us from the equilibria compu-
tation. The following parameterization of the generator angles
will achieve that purpose:

8y [(1 = )8 + pst] (3.7)

where §* and 6° are (n — 1)-dimensional vectors representing
the generator angles at the upper and lower equilibrium points
at a given parameter value (3 [or equivalently « by (2.14)], re-
spectively, and g is a new scalar bifurcation parameter.

With this parameterization, the identification of the singular
point of the constraint manifold at a fixed parameter « reduces
to a single parameter bifurcation problem of the following equa-
tion:

g(y,n) = 0. (3.8)
Note that we drop the parameter J; in (3.8) for the sake of
simplicity in the notation. Clearly, the SN bifurcation of the
algebraic variables y as the bifurcation parameter u changes
would be a singular point of the constraint manifold at the cor-
responding parameter «. In Section III-B-2, we describe a two-
staged algorithm that implements the NR and NRS methods to
locate the singular points. A similar method has also been re-
ported in [16] to compute the singular point on the impasse sur-
face that has the minimum potential energy as to characterize
the stability boundary for the case when the boundary does not
contain any unstable equilibria and/or periodic orbits.

2) Combined NR and NRS Method: As we have explained
in Section III-B-1, a singular point of the DAE model at a given
parameter is a static bifurcation point of the load bus voltage
magnitude and phase angles when the generator angles are sub-
ject to vary. Thus, the problem of computing a singular point
is equivalent to identification of the SN bifurcation of the al-
gebraic (3.8) as the scalar parameter 1 varies [thus, 6, changes
through (3.7)]. Therefore, we seek a singular point (y, 1) in the
constraint manifold such that rank[D, (g(y, ) — B¢)] = m — 1.
In other words, the singular points must belong to the constraint
manifold and the Jacobian matrix must have a simple eigenvalue
at the origin. We can rewrite these conditions as follows:

(3.9)
(3.10)
@3.11)

9(y, 1) =0
[Dyg(y, p)]vy =0
lvglla =1 =0

where y € R™ is the algebraic variables (load bus voltage mag-
nitude and phase angles), [D,g(y, )] € R™*™ is the Jaco-
bian matrix of the algebraic equations, v, € R™ is the right
eigenvector corresponding to the zero eigenvalue of the Jaco-
bian matrix, and p € R! is the bifurcation parameter used to
vary the generator angles. Observe that (3.11) assures that the
eigenvector v,, is nontrivial. Equation (3.10) together with (3.11)
establishes the singularity of Jacobian matrix.
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The conventional NR method is the most common iterative
technique to compute the roots of nonlinear algebraic equations.
This method can be applied to (3.8) as follows:

[Dyg(yi, WAy = —g(yi, ), yiv1 = yi + Ay.  (3.12)
The above iterative scheme works well almost every point
in the constraint manifold. However, it will fail to converge
around a singular point since the Jacobian matrix is close to
the singularity. The NRS method has been effectively used to
compute static bifurcation points in power systems. In order to
apply the NRS method to (3.9)-(3.11), a real eigenvalue (\) of
[Dyg(y, w)] is introduced as an independent variable. That will
make it possible to implement an iterative scheme that goes
around the singular point

hi =g(y,n) =0

hy = [Dyg(y, p) — Mo, =0
hs = [|lvy[[2—1 = 0. (3.13)
There are a total of (2/n + 1) in (3.13) and the same number
of unknown variables while A is the independent variable.
For a given A, (3.13) can be solved for the unknowns

A

T
z2=1[y v, p]

[DgH(éZ)]Aﬁ = —H(éi), Ziv1 = 21 + AZ (3.14)
where H = [hT KT KT]" and [D:H(%)] is the corre-
sponding extended Jacobian matrix of (3.13).

The NRS algorithm, like any other Newton-iterative method,
needs a good initial condition, that is a point in the constraint
manifold close enough to the singular point along with the
smallest real eigenvalue of [D,g(y, )] and the corresponding
right eigenvector v,. Otherwise, we may experience conver-
gence problems. Therefore, we first use the NR method. The
NR computations proceed starting at the upper equilibrium
point (¢ = 0) along the constraint manifold until it fails to con-
verge. The last successful NR data point is used to implement
an inverse iteration method [35] for estimating the eigenvalue
of [D,g(y, )] nearest A = 0, and the corresponding right
eigenvector v,. These data are then used to initiate an NRS
procedure using (3.14) to compute around the singular point
for values of A € [—e1,¢e2] with e1,e9 > 0. The value A = 0
is always included and data at the singular point is thereby
obtained.

In order to compute singular points at various parameters
along the nose curve and depict them together with the equi-
libria in a 2-D nose curve, the following procedure, which is
also graphically illustrated in Fig. 11, is implemented in VST.

Step 1) Choose a load (bus injections) increase pattern.

Step 2) Compute equilibrium points (nose curve), the sta-

bility properties of the equilibria and locate local bifurcations.

Step 3) Choose a parameter « along the nose curve and fix

1t.

Step 4) Compute the singular point at this parameter.

Step 5) Repeat the steps 3—4 as many times as desired up to

the parameter & = agn.

Step 6) Depict singular points in the nose curve.
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Fig. 11.

In Section IV, we illustrate the application of our method that
includes the steps given above to the IEEE 118-bus system.

IV. SIMULATION RESULTS

In this section, we present results on the SI bifurcation and
singular points for the IEEE 118-bus test system. The real and
reactive powers at bus 75 have been increased according to
(2.14). Fig. 12 illustrates how the voltage magnitude at bus 75
changes with parameter variations. As can be seen, two kinds
of bifurcations are identified, namely SN and SI bifurcations.
As the parameter « increases both upper and lower parts of
the nose curve are dynamically stable. At agy = 7.92, the
system undergoes a stability exchange associated with the SI
bifurcation and the stability feature of the lower equilibrium
points changes qualitatively, from stable to unstable. As the
parameter further increases, one stable (upper part) and one
type-1 unstable (lower part) equilibrium point meet at an SN
bifurcation point for agy = 8.69, which is the tip of the nose
curve. Beyond the SN bifurcation point, there is no feasible
solution to the load flow equations. The stability properties of
the lower part of the nose curve are certainly model dependent.
When the load dynamics are included the entire lower part of
the nose curve might be unstable.

Fig. 12 also depicts singular points at different parameter
values. The parameter value as; = 7.92 is especially impor-
tant in the sense that it enables us to check whether the sin-
gular point search method gives correct results. Recall that at
asy = 7.92 the SI bifurcation occurs and all the state infor-
mation at this parameter value is available to us from equilibria
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Graphical illustration of the procedure for computing singular points and depicting them along the nose curve.
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Fig. 12. Voltage magnitude at bus 75 versus parameter alpha () with singular
points when the real and reactive power at bus 75 increase.

and bifurcation analysis. The SI bifurcation point also belongs
to the singular set defined by (2.9). It is expected that the pro-
posed method should give the same result as that of the bifurca-
tion analysis at agy = 7.92. As seen from Fig. 12, this is indeed
the case. Observe that for the voltage magnitude at bus 75 sin-
gular points at each parameter value lies between the higher and
lower voltage solutions until the SI occurs. Note that the lower
part of the nose curve may not be practical operating points due
to the low-voltage profile. However, this is not the general case
as shown in Fig. 13 that depicts the voltage magnitude at bus 63
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Fig. 13. Voltage magnitude at bus 63 versus parameter alpha () with singular

points when the real and reactive power at bus 75 increase.

for the same load increase pattern. The lower part of the nose
curve and singular points including the SI bifurcation point lie
above 0.95 pu, which is usually considered to be the low-voltage
threshhold value for a normal operation of the power systems.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an iterative method to lo-
cate and identify singular points of the DAE model of power
system. In the method, we use generator angles to parameterize
the algebraic part of the DAE model and we identify the sin-
gular points as being the SN bifurcation of the algebraic part of
the DAE model. We have shown by a lemma that any singular
point at a given set of bus injections is an SI bifurcation point
at another set of bus injections. We have combined static infor-
mation from the SN and dynamic information from the singular
point together in order to provide a comprehensive picture of the
system stability. We have updated the VST to include singular
point computations. Simulation results on a 5-bus system and
the IEEE 118-bus system have been presented. We have illus-
trated singular points with the traditional nose curve for different
load change scenarios.

As future work, an energy function approach should be im-
plemented in order to provide a dynamic security index that
considers the singular points. Specifically, the dynamic stability
margin of a given operating point could be computed as the en-
ergy difference between the current operating point and the sin-
gular point. This scalar energy value would be the dynamic se-
curity index. Moreover, in order to complete the picture a static
security index as being the energy difference between the cur-
rent operating point and the point of collapse should be com-
bined with the dynamic security index.
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